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Abstract 
This study sought to determine the spatial and temporal variability of rainfall 
under past and future climate scenarios. The data used comprised station- 
based monthly gridded rainfall data sourced from the Climate Research Unit 
(CRU) and monthly model outputs from the Fourth Edition of the Rossby 
Centre (RCA4) Regional Climate Model (RCM), which has scaled-down nine 
GCMs for Africa. Although the 9 Global Climate Models (GCMs) downscaled 
by the RCA4 model was not very good at simulating rainfall in Kenya, the 
ensemble of the 9 models performed better and could be used for further stu-
dies. The ensemble of the models was thus bias-corrected using the scaling 
method to reduce the error; lower values of bias and Normalized Root Mean 
Square Error (NRMSE) were recorded when compared to the uncorrected 
models. The bias-corrected ensemble was used to study the spatial and tem-
poral behaviour of rainfall under baseline (1971 to 2000) and future RCP 4.5 
and 8.5 scenarios (2021 to 2050). An insignificant trend was noted under the 
baseline condition during the March-May (MAM) and October-December 
(OND) rainfall seasons. A positive significant trend at 5% level was noted un-
der RCP 4.5 and 8.5 scenarios in some stations during both MAM and OND 
seasons. The increase in rainfall was attributed to global warming due to in-
creased anthropogenic emissions of greenhouse gases. Results on the spatial 
variability of rainfall indicate the spatial extent of rainfall will increase under 
both RCP 4.5 and RCP 8.5 scenario when compared to the baseline; the in-
crease is higher under the RCP 8.5 scenario. Overall rainfall was found to be 
highly variable in space and time, there is a need to invest in the early disse-
mination of weather forecasts to help farmers adequately prepare in case of 
unfavorable weather. Concerning the expected increase in rainfall in the fu-
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ture, policymakers need to consider the results of this study while preparing 
mitigation strategies against the effects of changing rainfall patterns. 
 

Keywords 
CORDEX, Climate Change, Bias Correction, Ensemble, Rainfall, Kenya, 
RCA4 

 

1. Introduction 

Natural resources drive economic growth and livelihoods in Kenya. This depen-
dence means that fluctuation in climate, especially in rainfall; undesirably affects 
the biological, physical, and socio-economical setups resulting in disasters such 
as loss of livestock and crop failure in the agricultural sector (Bobadoye et al., 
2014; Omoyo et al., 2015). Agriculture is likely to be the most vulnerable sector 
to the changing climate with stress on subsistence farming in the tropical region, 
as smallholder farmers lack sufficient resources to acclimatize to climate change 
(Eriksen et al., 2005; Adhikari et al., 2015). Understanding the spatial variability 
of climate parameters can help fight hunger and poverty and improve the well- 
being of smallholder farmers by improving their management of natural resources 
for agricultural production (Mugo et al., 2016). 

Rainfall in its spatial and temporal variability is one of the major drivers de-
termining agricultural productivity in a region and in turn food security (Omoyo 
et al., 2015; Ochieng et al., 2016). Since farmers are highly dependent on rain-fed 
agriculture policy makers need to understand how rainfall will behave in the fu-
ture to develop long-term agricultural policies (Holzkämper et al., 2011; El-Beltagy 
& Madkour, 2012). The spatial variability of rainfall over Kenya has been con-
ducted by many researchers, showing that it exhibits high spatial and temporal 
variability (Indeje et al., 2001; Ongoma et al., 2015; Ongoma & Chen, 2017). 
There is general agreement that climate is changing making rainfall unpredicta-
ble and increasing the frequency of extreme weather events (Thornton et al., 
2008).  

Global climate models and regional climate models are examples of datasets 
used during climate impact studies. These models often carry biases which if 
unattended can spill over into climate change adaptation strategies (Ayugi et al., 
2020). In Kenya some studies show the main rainfall season March-May (MAM) 
is no longer as reliable as the October-December (OND) season (Shisanya et al., 
2011; Ayugi et al., 2016; Ongoma & Chen, 2017; Yang et al., 2017; Ouma et al., 
2018); however, GCMs predictions over the region show wetter conditions in-
consistent with observed trends especially for the MAM season. 

A common step towards reducing uncertainties in global models is to use a 
multi-model ensemble (MME) of several GCMs which despite often performing 
better than individual models still carry errors (Endris et al., 2013; Ogega et al., 
2016; Mukhala et al., 2017; Mutayoba & Kashaigili, 2017). Bias correcting rainfall 
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before using it for future studies is important as demonstrated by other studies 
(Terink et al., 2010; Ezéchiel et al., 2016; Ayugi et al., 2020; Liu et al., 2020; Vigna 
et al., 2020; Worku et al., 2020). This study used a MME of nine GCMs (down-
scaled using the CORDEX Fourth edition of Rossby Centre (RCA4) Regional 
Climate Model (RCM)) bias-corrected using the scaling method to study the 
spatial and temporal variability of rainfall under past and future climates (RCP 
4.5 and RCP 8.5 scenarios). The RCA4 RCM was chosen since it has down-
scaled the largest number of GCMs for Africa under the CORDEX project, and 
there is a need to study how well these downscaled GCMs compare with ob-
served data. 

2. Materials and Methods 
2.1. Study Area 

Kenya (Figure 1) lies between latitudes 5˚N and 5˚S and longitudes 34˚E and 
42˚E with a land area of approximately 584,000 km2. Kenya is characterised by 
large water bodies and a varying topography which gives rise to a range of climatic  
 

 
Figure 1. Topography of the study area (in meters). The brown regions show areas of 
high elevation decreasing through to the blue regions.  
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conditions. Climatic patterns in Kenya are influenced by the presence of high 
mountains such as Mount Kenya and Mount Kilimanjaro, the Indian Ocean, 
Lake Tanganyika, and Lake Victoria.  

Kenya receives rainfall in a bimodal pattern mainly controlled by the move-
ment of the ITCZ as it migrates north and south. The long rains start around 
March to June, peaking around March to May; the short rains start from Sep-
tember and drain away in November or December (Okoola, 1999; Herrero et al., 
2010). The Madden Julian oscillation causes decreased rainfall in the OND sea-
son over the East Africa region and increased rainfall during MAM (Omeny et 
al., 2008). Indeje et al., (2000) found there was a strong significant correlation 
between the equatorial stratospheric lower zonal wind and rainfall over some 
parts of East Africa. Kenya’s rainfall is also dependent on monsoon circulation; 
it experiences the Northeast monsoon which drives dry air into Kenya during 
the DJF season and Southeast monsoon which bring cool moist air from June to 
August (JJA) season (Okoola, 1999).  

The amount of rainfall received is correlated to topography; for example, the 
highest elevation regions receive up to 2300 mm per year whilst the low plateau 
receives only 320 mm. Over two-thirds of the country receives less than 500 mm 
of rainfall per year, particularly areas around the northern parts of the country 
(Herrero et al., 2010). Rainfall in Kenya has high variability across different re-
gions, with the Arid and Semi-Arid Lands (ASALS) experiencing the highest va-
riability in time and space. 

2.2. Data Description  

This study used monthly gauge-based station data from the Kenya Meteorologi-
cal Service for the homogeneous climate zones and station-based monthly grid-
ded rainfall data sourced from the Climate Research Unit (CRU) at 0.5˚ by 0.5˚ 
grid resolution (Harris et al., 2014); both datasets spanned from 1971 to 2000. 
The CRU dataset has been validated against observed data in Kenya and found 
useful (Ongoma & Chen, 2017). The third dataset comprised monthly gridded 
data sourced from the Fourth Edition of the Rossby Centre (RCA4) Regional 
Climate Model (RCM), which has scaled down nine GCMs in Africa at a 0.44˚ 
by 0.44˚ grid resolution (Table 1). Since the data from CRU and RCA4 had dif-
ferent resolutions, the model outputs were converted to a 0.5˚ by 0.5˚ grid using 
bilinear interpolation to reduce the effects of resolution in the comparison.  

The observed datasets from 1971 to 2000 were used to assess the ability of the 
downscaled RCA4 models to simulate rainfall in Kenya for the same period. The 
best performing model was adjusted for errors using the scaling method and 
then used to project changes in rainfall over the study area for the RCP 4.5 and 
RCP 8.5 scenarios from 2021 to 2050 which is the implementation period of 
Kenya’s vision 2030 goals. The RCP 4.5 scenario assumes that everything goes 
on as usual (Clarke et al., 2009; Wise et al., 2009), while the RCP 8.5 scenario 
represents the worst-case scenario (Riahi et al., 2011). 
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Table 1. Global climate models downscaled by the RCA4 model under the CORDEX africa project (Endris et al., 2013). 

 Institute Name GCM Name Calendar Days 

1 Canadian Center for Climate Modelling and Analysis (CCCma) CanESM2 365 days 

2 Centre National de Recherches Météorologiques (CNRM-CERFACS) CNRM-CM5 Standard 

3 Met Office Hadley Centre (MOHC) HadGEM2-ES 360 days 

4 Norwegian Climate Centre (NCC) NorESM1-M 365 days 

5 Commonwealth Scientific and Industrial Research Organisation (CSIRO) QCCCE-CSIRO-Mk3-6-0 365 days 

6 Model for Interdisciplinary Research on Climate (MIROC) MIROC5 365 days 

7 
National Oceanic and Atmospheric Administration-Geophysical Fluid Dynamics  
Laboratory (NOAA-GFDL) 

GFDL-ESM2M 365 days 

8 Max Planck Institute for Meteorology (MPI-M) MPI-ESM-LR Standard 

9 Institut Pierre Simon Laplace (IPSL) CM5A-MR 365 days 

2.3. Methodology 
2.3.1. Trend Analysis  
The Mann-Kendall test statistic used to determine trend (S) was computed using 
Equation (1) (Mann, 1945; Kendall, 1975), where jx  represents the successive 
values and n represents the number of data points in a set. 
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Accordingly, S increases (or decreases) by 1 if the current variable is larger (or 
smaller) than the previous variable (Equation (2)). The variance statistic, Var(S), 
is given by Equation (3) where r and pt  represent, respectively, the number of 
tied clusters and data points in the pth tied group. S and Var(S) values are used to 
calculate the test Z value as shown in Equation (4): 
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If the calculated value is larger than the significance level, an increasing (de-
creasing) trend is reported if the variable Z is positive (negative). The trend is 
insignificant if the calculated value of Z is smaller than the level of significance. 
A significance level of 5% was applied.  

The magnitude of the trend was predicted using the Sen’s estimator, Qi (Sen, 

https://doi.org/10.4236/ajcc.2020.93016


J. W. Mugo et al. 
 

 

DOI: 10.4236/ajcc.2020.93016 248 American Journal of Climate Change 
 

1968). The slope ( iT ) of all pairs of data is calculated using (Equation (5)), in 
which the parameters jx  and kx  are the values of data at period j and k, 
where j is greater than k. The mean of the n values of iT  is symbolized as the 
Sen’s estimator of slope and computed using Equation (6). 

j k
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x x
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j k
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−

                            (5) 
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                  (6) 

Positive and negative values of iQ  indicate, respectively, a trend that is in-
creasing and decreasing in the time series. The percentage change (%Δ) of the 
Sen’s slope over mean rainfall per unit time was computed using (Equation (7)) 
(Duhan & Pandey, 2013; Taxak et al., 2014). 

100
% iQ

x
n ∗

∆ =                             (7) 

2.3.2. Performance of Models in Simulating Historical Climate 
The performance of the RCA4 model in simulating the historical climate was 
assessed using various error analysis measures. The outputs from the RCA4 
model were evaluated against the observed data using the correlation coefficient 
(Equation (8)), bias (Equation (9)), and the normalised root mean square error 
(NRMSE) (Equation (11)) statistical measures (Luhunga et al., 2016; Mutayoba 
& Kashaigili, 2017). 
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where ,, ,i iO O P P  and N are the values of observed, mean of observed, pre-
dicted, and mean of predicted and the total number of these pairs respectively. 

Bias correction was done using the scaling, or the change factor, method due 
to its wide usage in literature (Wetterhall et al., 2012; Ezéchiel et al., 2016; Akh-
ter et al., 2017) which is given by Equation (12), where ,C iP  and ,O iP  are the 
corrected and uncorrected model outputs respectively; p∆  and r∆  is the av-
erage observed and GCM precipitation during the reference period. 
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3. Results and Discussions 

The results are presented and discussed on the spatial and temporal trends in 
rainfall under the baseline and future conditions using a bias-corrected ensemble 
of nine GCMs downscaled by the RCA4 model. An assessment of the perfor-
mance of the individual models and the ensemble in simulating observed rainfall 
is first conducted before bias correction. 

3.1. Assessment of the Performance of Climate Models in  
Simulating the Annual Cycle of Rainfall  

Figure 2 shows the annual pattern of rainfall in four regions in Kenya i.e. North 
West (Lodwar), western (Kakamega), southeastern (Garissa), and coastal (Voi) 
regions. Kenya experiences two rainfall peaks that occur during MAM and OND 
seasons in most regions, with the movement of the ITCZ. Some areas in the 
Western part of the country (e.g. Lodwar and Kakamega) receive rainfall during 
the JJA season due to the advection of cool moist air from the southeast mon-
soon.  

The models capture the bimodal pattern of annual rainfall following the 
movement of the ITCZ but fail to simulate the JJA season observed at Lodwar 
and Kakamega. Most of the models underestimate rainfall during the MAM 
season and overestimate rainfall in the OND season. The tendency of the CMPI 
models to underestimate MAM rainfall and overestimate rainfall in OND over 
East Africa has also been reported by other authors (Yang et al., 2015; Ongoma 
et al., 2019).  

 

 
Figure 2. Average monthly rainfall (mm) patterns for sample stations in Kenya during the 1971 to 2000 period. 
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3.2. Performance of Climate Models in Simulating the Spatial  
Distribution of MAM and OND Rainfall  

This subsection presents the performance of the RCA4 model in simulating the 
spatial distribution of rainfall during the MAM and OND seasons which are the 
main rainfall seasons in Kenya. 

3.2.1. Climatology of Observed and Simulated Rainfall 
Figure 3 and Figure 4 are the spatial plots of rainfall climatology for the CRU 
and RCA4 model outputs during the MAM and OND seasons respectively. 
Rainfall is concentrated in the western, central, and coastal parts of Kenya. The 
rainfall pattern could be attributed to the influence of the mesoscale systems 
around the regions and the apparent position of the ITCZ which is around the 
equator. All the nine models and their ensemble overestimate rainfall over the 
central and western part of the county which are high altitude regions. Models 
tend to have poor accuracy in high altitude areas and bias correction is often 
recommended before further studies (Endris et al., 2013; Mukhala et al., 2017; 
Kisembe et al., 2019). The models however have better skill in the low altitude 
areas indicating models tend to perform better as altitude decreases. 
 

 
Figure 3. Performance of RCA4 model in simulating the observed MAM rainfall total (in mm) over Kenya for 
1971-2000. Rainfall amount increases from the white shaded areas through to the red shaded areas. 
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Figure 4. Performance of RCA4 model in simulating the observed OND rainfall total (in mm) over Kenya for 1971-2000. Rainfall 
amount increases from the white shaded areas through to the red shaded areas. 

3.2.2. Simulated Rainfall Bias against Observed CRU Dataset 
Figure 5 and Figure 6 represent the spatial distribution of the average bias of 
the simulated rainfall dataset (RCA4) against the observed (CRU) rainfall data-
sets for the period 1971-2000 during the MAM and OND seasons, respectively. 
During the MAM season, most of the models underestimate rainfall over most 
parts of Kenya, especially in the low lying regions. Overestimation of rainfall is 
mostly noted in the western and central parts of Kenya, particularly around the 
high altitude areas, by most models except the MOHC, NCC, and NOAA models 
(Figure 5). Higher positive values of bias were observed during the OND season 
when compared to the MAM season (Figure 6). Confirming the models tend to 
overestimate rainfall more during the OND season.  

The models’ poor skill in the western and central regions can be attributed to 
their inability to simulate mesoscale systems driven by the orographic drag and 
the land-water contrasts in these areas.  
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Figure 5. Bias of the average RCA4 simulated rainfall against the observed CRU rainfall 
for the period 1971-2000 rainfall (in mm) during the MAM season over Kenya. Shades of 
red indicate overestimation while shades of blue indicate an underestimation. 

 

 
Figure 6. Bias of the average RCA4 simulated rainfall against the observed CRU rainfall 
for the period 1971-2000 rainfall (in mm) during the OND season over Kenya. Shades of 
red indicate overestimation while shades of blue indicate an underestimation. 
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3.2.3. Normalised Root Mean Square Error in the Simulated Rainfall  
Datasets against the Observed (CRU) Rainfall Data 

Figure 7 and Figure 8 represent the spatial distribution of the average NRMSE 
of the simulated rainfall dataset (RCA4) against the observed (CRU) rainfall da-
tasets for the period 1971-2000 during the MAM and OND seasons, respectively. 

Lower values of NRMSE are noted during the MAM season when compared 
to the OND season over most parts of Kenya. The highest values of NRMSE are 
noted in the western and central highlands of Kenya and the lowest values in the 
low altitude area for both seasons. The results agree with earlier observations 
that models improve accuracy with decreasing altitude.  

3.2.4. Correlation between Simulated Rainfall Datasets and the  
Observed (CRU) Rainfall Data 

Pearson’s correlation between the observed (CRU) and RCA4 model data was 
evaluated and plotted spatially. Figure 9 and Figure 10 represent the spatial 
plots of correlation for rainfall during MAM and OND respectively.  
 

 
Figure 7. NMRSE of the average RCA4 simulated rainfall against the observed CRU rainfall for the period 1971-2000 rainfall 
(in %) during the MAM season over Kenya. Shades of red indicate a large error while shades of blue indicate a small error. 
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Figure 8. NMRSE of the average RCA4 simulated rainfall against the observed CRU 
rainfall for the period 1971-2000 rainfall (in %) during the OND season over Kenya. 
Shades of red indicate a large error while shades of blue indicate a small error. 

 

 
Figure 9. Correlation between observed (CRU) and simulated (RCA4 model) rainfall 
during the MAM season in the period 1971-2000 over Kenya. Negative (positive) correla-
tion values are represented in shades of blue (red). 
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Figure 10. Correlation between observed (CRU) and simulated (RCA4 model) rainfall during the OND season in the period 
1971-2000 over Kenya. Negative (positive) correlation values are represented in shades of blue (red). 

 
Overall the correlation between the observed and RCA4 model data was not 

very good, confirming the models are not able to simulate rainfall in Kenya very 
well. However, values of correlation greater than +0.2 were observed over several 
places in the study area during both MAM and OND seasons. Areas around the 
western and central Kenya show correlation values between −0.2 and +0.2 con-
firming models are not able to replicate the mesoscale systems around these 
areas. 

3.3. Bias-Correction of Rainfall during the MAM and OND Rainfall  
Seasons 

Figure 11 shows the average bias in rainfall after correction during the MAM 
and OND seasons. Figure 12 represents the average NRMSE in rainfall after 
correction during the MAM and OND seasons. The MAM and OND season 
were chosen since they are considered the main rainfall seasons in Kenya. The  
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Figure 11. Bias of the average corrected ensemble of simulated rainfall against the ob-
served CRU rainfall for the period 1971-2000 rainfall (in mm) during the MAM and OND 
season over Kenya. Shades of red indicate overestimation while shades of blue indicate an 
underestimation. 

 

 
Figure 12. NMRSE of the average RCA4 simulated rainfall against the observed CRU 
rainfall for the period 1971-2000 rainfall (in %) during the MAM and OND season over 
Kenya. Shades of red indicate a large error while shades of blue indicate a small error. 

 
bias-corrected ensemble showed improvement after being corrected during the 
MAM (Figure 13) and OND (Figure 14) season. Bias correction reduced the 
disagreement between the observed CRU dataset and the ensemble of the RCA4 
RCM dataset. Other studies have found it important to perform bias correction 
before using the data for climate impact studies (Ezéchiel et al., 2016; Akhter et 
al., 2017; Mutayoba & Kashaigili, 2017; Ayugi et al., 2020). 
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Figure 13. Performance of the RCA4 bias-corrected ensemble in simulating the observed MAM rainfall to-
tal (in mm) over Kenya for 1971-2000. Rainfall amount increases from the white shaded areas through to 
the red shaded areas. 

 

 
Figure 14. Performance of the RCA4 bias-corrected ensemble in simulating the observed OND rainfall total 
(in mm) over Kenya for 1971-2000. Rainfall amount increases from the white shaded areas through to the 
red shaded areas. 

3.4. Analysis of Temporal Variability of Seasonal Rainfall Using  
the Bias-Corrected Ensemble under Baseline and Future  
Conditions 

Table 2 and Table 3 present the results on the trend of rainfall during the MAM 
and OND seasons respectively for the baseline, RCP 4.5, and RCP 8.5 scenarios.  

The trends in rainfall were statistically insignificant at a 5% significance level 
during both MAM and OND seasons under the baseline condition. The insigni-
ficance in trend for both seasons means we cannot conclusively determine wheth-
er rainfall is increasing or decreasing in these regions and this could be attributed 
to the variable nature of rainfall. Other studies in the region have also found 
rainfall to be highly variable (Endris et al., 2016; Ongoma & Chen, 2017; Sagero 
et al., 2018). The magnitude of trend change ranged between −4.4% and 26.0% 
during the MAM season (Table 2) and between 4.0% and 40.4% in the OND 
season (Table 3) for the baseline condition.  

During MAM (Table 2) a positive significant trend in rainfall was recorded at  
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Table 2. Time series analysis of MAM rainfall (mm) under the baseline, RCP 4.5, and 
RCP 8.5 scenarios. Where Z symbolizes the Mann Kendall statistic (Bold values mean Z is 
significant at 95%), Q symbolizes the Sen’s slope and %Δ the percentage change of the 
Sen’s slope over mean quantity per unit time. 

 Baseline RCP 4.5 RCP 8.5 

Station Z Q %Δ Z Q %Δ Z Q %Δ 

Dagoretti 1.4 1.9 12.5 1.4 2.9 18.5 −0.8 −1 −6.3 

Garissa 1.2 0.6 12.6 1.9 3.8 61.7 0.6 0.7 10.6 

Kakamega 1.2 2.6 12.3 −0.1 −0.6 −2.7 0.2 0.9 3.7 

Kisumu 1 1.7 9.4 −1 −4 −21.2 0.5 0.7 3.7 

Lamu NA NA NA NA NA NA NA NA NA 

Mandera 0.6 0.3 5.9 2.7 3.6 56.8 2.5 3.1 42.8 

Marsabit 0.6 0.6 7.6 2.8 6.9 73 2.9 3.8 37.9 

Mombasa NA NA NA NA NA NA NA NA NA 

Moyale 0 0 0.3 2.8 3.8 37.2 2.9 3.8 35.3 

Nakuru 0.2 0.3 2.7 −0.6 −1 −10.3 0 0 −0.3 

Nanyuki 0.4 0.5 3.9 1.9 2.8 21.8 −1 −0.8 −6 

Narok 1 1.7 14.7 −0.4 −1 −8.5 −0.7 −0.8 −6.4 

Voi −0.6 −0.3 −4.4 2.1 3.2 38.4 −0.2 −0.2 −2.5 

Wajir 1.8 1.5 26 3.9 5.9 85.1 2 1.7 23.4 

Lodwar 0.9 0.5 16 1.7 2.4 55.2 2.1 2.4 52.6 

Kitui 1.4 1.6 14.2 2.5 5.7 46.4 −0.7 −0.8 −5.9 

 
Table 3. Time series analysis of OND rainfall (mm) under the baseline, RCP 4.5, and 
RCP 8.5 scenarios. Where Z symbolizes the Mann Kendall statistic (Bold values means Z 
is significant at 95%), Q symbolizes the Sen’s slope and %Δ the percentage change of the 
Sen’s slope over mean quantity per unit time. 

 Baseline RCP 4.5 RCP 8.5 

Station Z Q %Δ Z Q %Δ Z Q %Δ 

Dagoretti 0.4 0.4 4 1.9 1.7 16.9 1 0.8 8.3 

Garissa 1.4 0.5 9.3 1.7 1.9 26.4 0.9 1 13.8 

Kakamega 1 2 16.5 2.1 3.5 24.9 0.5 0.9 6.3 

Kisumu 1.1 1.6 15.5 1.3 2 17.6 −0.3 −0.6 −5.7 

Lamu NA NA NA NA NA NA NA NA NA 

Mandera 1.2 0.5 11.6 1.4 1.3 27.3 1.8 1.4 25.8 

Marsabit 0.5 0.5 8.5 1.8 2 26.8 2.3 2.2 27.5 

Mombasa NA NA NA NA NA NA NA NA NA 

Moyale 0.8 0.5 8.6 0.9 1.3 17.2 2.2 2.1 27.5 

Nakuru 0.9 0.4 6.1 1 0.4 6.4 −0.4 −0.1 −1.2 

Nanyuki 1.2 1 6.6 1.3 1.5 9.8 0.9 0.6 3.7 

Narok 0.4 0.2 4.1 1.3 0.8 13.2 0 0 0.5 

Voi 0.5 0.2 2.6 1.6 1.7 17.6 1.1 1.1 10.8 

Wajir 1.6 0.8 18.5 1.8 1.7 30.5 1.8 1.4 24.3 

Lodwar 1.4 0.6 40.4 2.2 0.9 51.6 1 0.5 24.5 

Kitui 1 0.8 6 1.6 2.2 13.7 1.1 1.7 10 
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the Mandera, Marsabit, Moyale, Voi, Wajir, and Kitui stations under the RCP 
4.5 scenario, and at Mandera, Marsabit, Moyale, Wajir and Lodwar under the 
RCP 8.5 scenario. The magnitude of trend ranged between −8.5% and 85.1% 
under the RCP 4.5 scenario, and between −6.4% and 52.6% under the RCP 8.5 
scenario.  

During OND (Table 3) a positive significant trend in rainfall was recorded at 
the Kakamega and Lodwar stations under the RCP 4.5 scenario, and at Marsabit 
and Moyale under the RCP 8.5 scenario. The magnitude of trend ranged be-
tween 6.4% and 51.6% under the RCP 4.5 scenario, and between −5.7% and 
27.5% under the RCP 8.5 scenario.  

The positive trend recorded under RCP 4.5 and 8.5 show rainfall will increase 
in the future. Some studies using CMIP3/5 data found rainfall will increase in 
the future over East Africa as a result of global warming due to increased anth-
ropogenic emissions of greenhouse gases (Otieno & Anyah, 2013; Tierney et al., 
2015). However, other studies using observed data found a decrease in observed 
rainfall over East Africa during the MAM season and a wetter OND season 
(Ongoma & Chen, 2017; Ongoma et al., 2018; Mumo et al., 2019). The increase 
in OND rainfall was attributed to the warming of the western Indian Ocean 
(Liebmann et al., 2014). Yang et al. (2014) attributed the decrease in MAM rain-
fall over East Africa to natural decadal variability rather than anthropogenic in-
fluence.  

The inconsistency between the observed conditions and the global model 
predictions is called the “East Africa climate paradox” (Rowell et al., 2015). 
The disagreement between observed and model data trends has been attributed 
to the scarcity of in situ data required for model parameterization over the re-
gion (Brands et al., 2013). If the projected rainfall actualizes, it will be a recov-
ery from the observed drying trend currently being experienced (Yang et al., 
2015). 

3.5. Spatial Analysis of Seasonal Rainfall Using the Bias-Corrected  
Ensemble under Baseline and Future Conditions 

Figure 15 and Figure 16 represent the spatial analysis of rainfall during the 
MAM and OND seasons based on RCP 4.5 and RCP 8.5 scenario for the period 
from 2021 to 2050. 

Figure 15 and Figure 16 show that the rainfall is concentrated in the western 
and central parts of the country during both the MAM and OND seasons. The 
spatial trend in rainfall is expected to increase in area under both RCP 4.5 and 
RCP 8.5 scenario when compared to the baseline; the area increase is higher un-
der the RCP 8.5 scenario. The rainfall amount increase in the MAM season is 
more compared to the OND season for both RCP 4.5 and 8.5 scenarios. Mukhala 
et al. (2017) found small precipitation gains in the future in a similar study, us-
ing the uncorrected MME of the RCA4 model. 
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Figure 15. Spatial analysis of rainfall during the MAM season based on RCP 4.5 and RCP 8.5 scenario 
(2021-2050). Rainfall amount increases from the white shaded areas through to the blue shaded areas. 

 

 
Figure 16. Spatial analysis of rainfall during the OND season based on RCP 4.5 and RCP 8.5 scenario 
(2021-2050). Rainfall amount increases from the white shaded areas through to the blue shaded areas. 

4. Conclusion 

The pattern and distribution of rainfall in Kenya drive farming practices and  
agricultural policies and the behaviour of rainfall in the future will affect the 
agricultural industry in the country. This study sought to investigate the spatial 
and temporal variability of rainfall under past and future climate scenarios. To 
achieve this objective a suite of models downscaled by the RCA4 model and ob-
served CRU data was used to assess the present and future rainfall patterns over 
Kenya. Since the skill of the individual and ensemble of RCA4 models over the 
domain was not very good in replicating rainfall in Kenya for the MAM and 
OND seasons; the skill was improved by reducing the error in the ensemble us-
ing the scaling method.  

The bias-corrected ensemble showed improvement in simulating the rainfall 
for the two seasons was consequently used to study rainfall variability relative to 
the baseline period under future RCP 4.5 and RCP 8.5 scenarios. An insigni-
ficant trend was noted under the baseline condition during the March-May 
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(MAM) and October-December (OND) rainfall seasons. A positive significant 
trend at 5% level was noted under RCP 4.5 and 8.5 scenarios in some stations 
during both MAM and OND seasons. The increase in rainfall was attributed to 
global warming due to increased anthropogenic emissions of greenhouse gases. 
Results on the spatial variability of rainfall indicate the spatial extent of rainfall 
will increase under both RCP 4.5 and RCP 8.5 scenario when compared to the 
baseline; the increase is higher under the RCP 8.5 scenario. 

Overall the bias-corrected ensemble of the RCA4 model was able to capture 
the pattern of MAM and OND rainfall in Kenya and can be used for further stu-
dies. Rainfall was found to be highly variable in space and time and there is thus 
need to invest in the early dissemination of weather forecasts to help farmers 
adequately prepare in case of unfavourable weather. Concerning the expected 
increase in rainfall in the future, policymakers need to consider the results of this 
study while preparing mitigation strategies against the effects of changing rain-
fall patterns. 
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