| dc.contributor.author | Tagnon, Mèmègnon R. | |
| dc.contributor.author | Atindogbe, Cyriaque | |
| dc.contributor.author | Wali, Augustus N. | |
| dc.date.accessioned | 2018-10-01T06:53:55Z | |
| dc.date.available | 2018-10-01T06:53:55Z | |
| dc.date.issued | 2018 | |
| dc.identifier.citation | International Mathematical Forum, Vol. 13, 2018, no. 9, 427 - 435 | en_US |
| dc.identifier.uri | http://www.m-hikari.com/imf/imf-2018/9-12-2018/p/tagnonIMF9-12-2018.pdf | |
| dc.identifier.uri | http://repository.seku.ac.ke/handle/123456789/4266 | |
| dc.description | https://doi.org/10.12988/imf.2018.8842 | en_US |
| dc.description.abstract | Given a hypersurface immersion and a transversal vector field, the formula of Gauss leads to an induced connection and a symmetric bilinear function called affine fundamental form. We define the norm of tensor field using the affine fundamental form (assumed to be nondegenerate) and prove that a hypersurface immersion on a connected compact 𝑛-dimensional differential manifold 𝑀 into the affine space ℝ𝑛+1 induces an almost affinely flat structure on 𝑀. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Hikari | en_US |
| dc.subject | Affine (hypersurface) immersion | en_US |
| dc.subject | curvature tensor | en_US |
| dc.subject | almost affinely flat | en_US |
| dc.subject | Riemannian metric | en_US |
| dc.title | On the Existence of Almost Affinely Flat Structure Induced by Hypersurface Immersion on Connected Compact Manifold | en_US |
| dc.type | Article | en_US |