| dc.contributor.author | Rotich, John K. | |
| dc.contributor.author | Bitok, Jacob K. | |
| dc.contributor.author | Maritim, Simeon K. | |
| dc.contributor.author | Kirui, Wesley | |
| dc.date.accessioned | 2019-01-14T09:20:52Z | |
| dc.date.available | 2019-01-14T09:20:52Z | |
| dc.date.issued | 2014-10 | |
| dc.identifier.citation | International Journal of Scientific & Engineering Research, Volume 5, Issue 10 | en_US |
| dc.identifier.issn | 2229-5518 | |
| dc.identifier.uri | https://www.researchgate.net/publication/277008413_Crank-Nicholson-Du_Fort_And_Frankel-Lax-Friedrich's_Hybrid_Finite_Difference_Schemes_Arising_From_Operator_Splitting_For_Solving_2-Dimensional_Heat_Equation | |
| dc.identifier.uri | http://repository.seku.ac.ke/handle/123456789/4312 | |
| dc.description.abstract | We develop hybrid finite difference schemes arising from operator splitting to solve 2-D heat equations. We develop CrankNicholson-Du Fort and Frankel-Lax-Friedrich’s method. We determine that the hybrid Crank-Nicholson-Du Fort and Frankel-Lax-Friedrich’s method is the more accurate than the pure Cranck-Nicholson Scheme. This method is also unconditionally stable because they are CrankNicholson based. The methods that involve Du Fort and Frankel discretization are three-level. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | IJSER Publications | en_US |
| dc.subject | Crank-Nicholson | en_US |
| dc.subject | Du-Fort and Frankel | en_US |
| dc.subject | Lax-Friendrich | en_US |
| dc.subject | Hybrid Finite Difference Scheme | en_US |
| dc.subject | Operator splitting | en_US |
| dc.subject | 2-Dimensional heat equation | en_US |
| dc.title | Crank-Nicholson-Du Fort and Frankel-Lax-Friedrich's hybrid finite difference schemes arising from operator splitting for solving 2-dimensional heat equation | en_US |
| dc.type | Article | en_US |