| dc.contributor.author | Zegeye, Habtu | |
| dc.contributor.author | Malonza, David M. | |
| dc.date.accessioned | 2025-07-23T08:00:35Z | |
| dc.date.available | 2025-07-23T08:00:35Z | |
| dc.date.issued | 2012-12-18 | |
| dc.identifier.citation | Arabian journal of mathematics, volume 2, pages 221–232, 2013 | en_US |
| dc.identifier.issn | https://link.springer.com/content/pdf/10.1007/s40065-012-0060-z.pdf | |
| dc.identifier.uri | http://repository.seku.ac.ke/xmlui/handle/123456789/8120 | |
| dc.description | DOI 10.1007/s40065-012-0060-z | en_US |
| dc.description.abstract | Let X be a uniformly convex and uniformly smooth real Banach space with dual X∗. Let F : X → X∗ and K : X∗ → X be continuous monotone operators. Suppose that the Hammerstein equation u + KFu = 0 has a solution in X. It is proved that a hybrid-type approximation sequence converges strongly to u∗, where u∗ is a solution of the equation u + KFu = 0. In our theorems, the operator K or F need not be defined on a compact subset of X and no invertibility assumption is imposed on K. | en_US |
| dc.language.iso | en | en_US |
| dc.subject | 47H05 | en_US |
| dc.subject | 47H06 | en_US |
| dc.subject | 47H30 | en_US |
| dc.subject | 47J05 | en_US |
| dc.subject | 47J25 | en_US |
| dc.title | Hybrid approximation of solutions of integral equations of the hammerstein type | en_US |
| dc.type | Article | en_US |