Normal form for systems with linear part N(3)n

Show simple item record

dc.contributor.author Gachigua, Grace
dc.contributor.author Malonza, David M.
dc.contributor.author Sigey, Johana
dc.date.accessioned 2025-09-11T10:19:15Z
dc.date.available 2025-09-11T10:19:15Z
dc.date.issued 2012-11-12
dc.identifier.citation Applied mathematics, volume 3, issue 11, pp 1641-1647, November 2012 en_US
dc.identifier.uri https://www.scirp.org/pdf/AM20121100010_28023736.pdf
dc.identifier.uri http://repository.seku.ac.ke/xmlui/handle/123456789/8163
dc.description DOI: 10.4236/am.2012.311227 en_US
dc.description.abstract The concept of normal form is used to study the dynamics of non-linear systems. In this work we describe the normal form for vector fields on with linear nilpotent part made up of coupled n 3n  3 3  Jordan blocks. We use an algorithm based on the notion of transvectants from classical invariant theory known as boosting to equivariants in determining the normal form when the Stanley decomposition for the ring of invariants is known. en_US
dc.language.iso en en_US
dc.publisher Scientific Research Publishing en_US
dc.subject Transvectant en_US
dc.subject Equivariants en_US
dc.subject Box Product en_US
dc.subject Stanley Decomposition en_US
dc.title Normal form for systems with linear part N(3)n en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Dspace


Browse

My Account