Hybrid approximation of solutions of integral equations of the hammerstein type

Show simple item record

dc.contributor.author Zegeye, Habtu
dc.contributor.author Malonza, David M.
dc.date.accessioned 2025-07-23T08:00:35Z
dc.date.available 2025-07-23T08:00:35Z
dc.date.issued 2012-12-18
dc.identifier.citation Arabian journal of mathematics, volume 2, pages 221–232, 2013 en_US
dc.identifier.issn https://link.springer.com/content/pdf/10.1007/s40065-012-0060-z.pdf
dc.identifier.uri http://repository.seku.ac.ke/xmlui/handle/123456789/8120
dc.description DOI 10.1007/s40065-012-0060-z en_US
dc.description.abstract Let X be a uniformly convex and uniformly smooth real Banach space with dual X∗. Let F : X → X∗ and K : X∗ → X be continuous monotone operators. Suppose that the Hammerstein equation u + KFu = 0 has a solution in X. It is proved that a hybrid-type approximation sequence converges strongly to u∗, where u∗ is a solution of the equation u + KFu = 0. In our theorems, the operator K or F need not be defined on a compact subset of X and no invertibility assumption is imposed on K. en_US
dc.language.iso en en_US
dc.subject 47H05 en_US
dc.subject 47H06 en_US
dc.subject 47H30 en_US
dc.subject 47J05 en_US
dc.subject 47J25 en_US
dc.title Hybrid approximation of solutions of integral equations of the hammerstein type en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Dspace


Browse

My Account