dc.contributor.author |
Zegeye, Habtu |
|
dc.contributor.author |
Malonza, David M. |
|
dc.date.accessioned |
2025-07-23T08:00:35Z |
|
dc.date.available |
2025-07-23T08:00:35Z |
|
dc.date.issued |
2012-12-18 |
|
dc.identifier.citation |
Arabian journal of mathematics, volume 2, pages 221–232, 2013 |
en_US |
dc.identifier.issn |
https://link.springer.com/content/pdf/10.1007/s40065-012-0060-z.pdf |
|
dc.identifier.uri |
http://repository.seku.ac.ke/xmlui/handle/123456789/8120 |
|
dc.description |
DOI 10.1007/s40065-012-0060-z |
en_US |
dc.description.abstract |
Let X be a uniformly convex and uniformly smooth real Banach space with dual X∗. Let F : X → X∗ and K : X∗ → X be continuous monotone operators. Suppose that the Hammerstein equation u + KFu = 0 has a solution in X. It is proved that a hybrid-type approximation sequence converges strongly to u∗, where u∗ is a solution of the equation u + KFu = 0. In our theorems, the operator K or F need not be defined on a compact subset of X and no invertibility assumption is imposed on K. |
en_US |
dc.language.iso |
en |
en_US |
dc.subject |
47H05 |
en_US |
dc.subject |
47H06 |
en_US |
dc.subject |
47H30 |
en_US |
dc.subject |
47J05 |
en_US |
dc.subject |
47J25 |
en_US |
dc.title |
Hybrid approximation of solutions of integral equations of the hammerstein type |
en_US |
dc.type |
Article |
en_US |